
Computer Vision Project

This project is all about computer images, from simple still photography to detecting faces in a

live video stream. You will make a record of your experiments in the form of a video. You will

be working as a team, so please take turns at the keyboard, and make decisions as a group.

Along the way, you will also learn about:

 The free Linux operating system (pronounced “linnix” in the US)

 The Python programming language

 Some graphic and video editing methods

Equipment

A. Raspberry Pi

The Raspberry Pi is a “Single Board Computer”, that is, a

complete computer built on a single circuit board.

The Raspberry Pi was developed by the Raspberry Pi

Foundation, a non-profit organization founded in 2009

to promote the study of basic computer science. It was

first available in 2012, and 25 million Raspberry Pis were

sold by the end of February 2019.

B. Pi Camera

Still resolution 5 Megapixels

Video modes
1080p30, 720p60 and 640 ×
480p60/90

Sensor OmniVision OV5647

Sensor resolution 2592 × 1944 pixels

Fixed focus 1 m to infinity

C. Peripherals

Monitor (20" LED-lit 1600 x 900 Resolution), keyboard, mouse.

Activities

There are 9 activities total, A through I. You should try to average about two activities each day we meet, but it is up to

you to set your own pace. There is no penalty if you do not do all the activities (other than perhaps wishing you had).

A. Take a picture

Our first activity will use the camera module to capture a still image. To do this, we will open and run a Python program.

1. Start “Thonny”1. To do this, click on the raspberry icon in the
upper left corner of your screen, point at Programming, and click
Thonny Python IDE, as shown.

2. Once Thonny starts, click the Open button () and look for

/home/pi/Python Programs/TakePicture.py. When

it opens it should look something like the image at right.

1
 Thonny is a simple Integrated Development Environment (IDE) for editing and running Python programs. “Integrated Development

Environment” means you both edit and run your program in it. Usually it also does other helpful things like using different colors for
different parts of your program.

3. Click the Run button (). The program puts up a preview window so you can see what will be in your picture.

4. When ready, type the Enter key to take the picture. The picture you just took will appear in a new window. (If the

Enter key doesn’t work, you may need to click on Thonny to give it focus.) Use the escape key to quit. Rerun the

program as necessary to try again. We’d like to get a picture of everyone in your team. The easier way would be to

get everyone in one picture. But if you want a separate picture for each person, you need to edit the Python code on

line 11, where it says pictureFile = 'picture.jpg ' to give different names for each person’s picture.

Later this picture or pictures will become the start of a video you put together using Flowblade Video Editor.

You just took a picture with the Raspberry Pi Camera using a Python program.
Next we’re going to become more comfortable with finding our way around on the Raspberry Pi.

5. So that we can find your captured image later, we’ll copy it now, while we have the information in front of us in

Thonny’s “Shell” window. The Shell window in Thonny is where the print statements in the Python code write to.

(The Shell window is also where any error messages would appear.)

It should look like this:

6. We’ll use the Raspberry Pi’s “File Manager” to
copy the file. You can open it by clicking on the
file folder icon as shown at right. When it opens,
it will look like the image below.

7. To make it easy to copy from one folder to another, click the File Manager icon a second time so you have two such
windows. The following image also shows the Find Files feature being selected from the Tools menu. You can use
this, if necessary, to search for your picture file.

8. Locate your image file (or files) to copy. As in
Windows, you can select more than one file by
holding down the control key. To copy, right-
click and select Copy.

9. We’ll then paste into /home/pi/Videos, since
we’ll be using this and other files to create our
video. Again, this can be done with the right-
click menu.

Note: Linux uses forward slashes whereas
Windows uses backslashes.

You can double-click on your image file in File Manager to view it. (Or right-click and choose Open.)

The Python program you ran had some extra lines to do things like display the picture you took. If you just wanted to

take the picture and open it later in File Manager, this would have been enough code:

You’re done with this activity! If you have at least 20 minutes remaining, you can go on to
Record a Video. Or see the following extra experiment with the camera. These extra activities
are always short, and are recommended unless you don’t have enough time.

Optional Activity Ax1:

Run the TakePicture.py Python program so that the preview window is present. Then shield the camera module

from some of the available light with your hand or a book, and observe the background.

The camera is automatically adjusting its exposure (its sensitivity to light), as well as its “white balance” (how “warm” or

“cool” the lighting appears).

B. Record a Video

1. If not already open, start Thonny (as in A.1) and open a file (as in A.2). This time, open RecordVideo.py.

2. Run the program (as in A.3). You will be prompted for a length of time and a filename. This is just a trial run, so you

can leave the recording time at 10 seconds and the file name as movie.h264.

3. Locate movie.h264 in File Manager (as explained in A6), and view it. (It should open in VLC Player.)

4. Ok, now let’s take a more interesting movie for the video we’ll be
making. Aim the camera at your team and run the program,
allowing 20 seconds this time. SLOWLY rotate the camera so that it
eventually is looking right at the preview on the monitor. (You
should get a picture of a picture of a picture…)

5. View the movie you recorded, and if you like it, copy it to /home/pi/Videos. (Refer to A7 if you need help copying.)

Great, you’re done! Here are two extra activities you might find useful.
Note, the Video Editing activity will take you at least a half hour.

Optional Activity Bx1.

In this last program, RecordVideo.py, we used os.system to record the
video. Python’s os.system(“something”) is the same as entering

“something” at a “Terminal” prompt. “Terminal” on a Raspberry Pi is like the
“Command Prompt” on Windows. Open up a Terminal window now, and enter:

cd /home/pi/Videos

Now (assuming your movie is named movie.h264), enter:

ffplay movie.h264

ffplay can open most video, still image, and audio formats. We’ll use it later to
play audio in our Detect Motion activity.

Optional Activity Bx2.

Add this line onto the very end of RecordVideo.py and rerun it. Be careful with the single and double quotes, and

note that there must be a space after ffplay.

os.system('ffplay "' + outputFile + '"')

This takes advantage of the way os.system allows us to execute any command from our Python program.

C. Video Editing

As promised, we’ll record our activities in the form of a video. We’ll make a start on that now.

a) File conversion using the command line:

1. As in the first step of Optional Activity Bx1, open a “Terminal” window and enter the command:

cd /home/pi/Videos

2. We saved to the H264 format because it was quick and we wanted to get the best performance we could from the

admittedly not-so-fast Raspberry Pi. Now we want to convert the video to the more common MP4 format before

bringing it into Flowblade. We’ll use ffmpeg to do this. The -i option specifies the input file, so if your video is named

something other than movie.h264, use that name there instead. The ffmpeg command expects the last thing on the

line to be the output file, so you can make that anything you want your MP4 file to be named:

ffmpeg –i movie.h264 movie.mp4

3. That’s it; you can open your output file in VLC Player to make sure it worked.

4. Enter the ls command. This is the Linux “list files” command. You should see your JPEG (*.jpg) file(s) from activity

A, and also your input and output from running ffmpeg. If not, copy these files now to /home/pi/Videos

using File Manager, and repeat the ls command to make sure they are there.

b) Combining files using Flowblade:

1. From the main “Raspberry” menu, instead of Programming, go down to Sound and Video, and select Flowblade Movie

Editor.

2. From Flowblade’s Project menu, select Add Video, Audio, or Image….

3. In the left navigation pane, select Videos. You should see the same files you saw when you did the ls command

above. Select all the files you want to use and click Open. You will probably get a dialog titled “Loaded Media Profile

Mismatch”. This is because Flowblade defaults to the PAL output format which is used in many other countries,

whereas the United States uses NTSC. Just click “Change To File Profile”.

4. Flowblade is arranged something like this diagram. You may need to refer to this in the following steps:

Project info

Your image and video files go here
You can preview the movie

you’re making here

Bins
bin_1

Sequences
sequence_1

 Media | Range Log | Compositors | Render <| |> > []] [. . .

V3

This is your “timeline” showing the various pieces you arrange to make your movie

V2

V1

A1

A2

Note 1: Video editing is a complex activity and Flowblade has many complicated features. It is easy to get lost
or to give Flowblade something to do that will take what seems forever on a Raspberry Pi. You are encouraged
to explore Flowblade when you have free time, but it is best to follow instructions carefully for now.

Note 2: If at any point you don’t see your image/video files, make sure “Media” is selected in the middle bar.

Note 3: When right-clicking an item in the timeline, first left-click to make sure you’re working with the item
you think you are; then right-click to bring up the desired menu.

5. Drag one file at a time to the start of the “V1” timeline. (See
the following image.) This is your main video track. Slide
them left so that the first item starts at time zero, and the
next one starts right after the first one. Still images are given
an arbitrary length, about 8 seconds. You may want to
shorten that to 4 or 5 seconds. You can do this by dragging
the right edge to the left, or by right-clicking and bringing up
the Set Clip Length dialog as shown at right.

6. As each item is added, you may need to zoom out to see it entirely. You can’t add something to the end of the

timeline if you can’t see where that is.

c) Adding titles in Flowblade:

1. Click the button that looks like a “T” in a box. This will launch the
“Titler”. (See image below.) You can enter your text in the upper
left, change font, color, and add a shadow effect if you want. You
can drag the result into position in the upper right preview pane.
When you like what you have, click “Save This Graphic”. It would
be a good idea to save it to your Videos folder. Then click Close.

2. You will now have the image file you just created in your “bin” of
media files. Drag it to the start of V2 (above V1).

3. You need to tell Flowblade to give the title image a transparent
background so just the text appears “floating” above your main
video track. To do this, right-click the title item you just dragged
onto your timeline, and point to Add Compositor and click Blend.

4. This will automatically switch you to “Compositors” in the middle bar. You can do some fancy things here, but to

avoid getting lost, click “Media” to go back to your original view.

5. If you want, you can now right-click on your title block in V2 of your timeline, and select Add Fade, Fade In (or Fade

Out). Drag the edge of your fade effects to set their length; usually you only want a few seconds.

6. Save your work! Go to File, Save. Give a name you will remember (ending with .flb), select the Videos folder, and

click Save.

7. If you haven’t already, preview your work by clicking the “play” triangle button below the upper-right preview pane.

You may have to set your timeline cursor (the vertical line) to the beginning; the easiest way to do this is use the

Home key.

You did it! You may have a future in video editing!
The next optional activity is just for fun, you earned it!

Optional Activity Cx1.

If you have time, you can watch VIDEO_MOTAGE.mp4 (8 min) or MontageFromUp.mp4 (4 min) in your Videos folder.

D. Detect Motion

1. If not already open, start Thonny, and open DetectMotion.py.

2. Aim the camera so that nothing is moving in its field of view.

3. Run the program, wait several seconds, and walk in front of the camera. It should take a picture and display it, and

sound an alarm.

4. It works but is not especially sensitive. So have someone sit in from of the camera about 2 feet (~25 cm) away and

run the program. Observe what they need to do to trigger the alarm. Eye blink? Open mouth? Probably it will take a

90 degree head turn.

5. Now edit the program as shown, changing the
variable difference to 10 and pixels to 50.
Rerun the program.

6. Is opening a mouth or turning the head just a few
degrees now enough to trigger the alarm?

7. Do some more experiments with difference
and pixels.

8. The delay variable, set to 5 seconds, is to prevent
one movement from creating multiple alarms. You
can see what happens if you set it to 1 or 2.

9. Using File Manager, locate the other audio files in
/home/pi/Music/SoundEffects. Try using

a different one for the assignment of audioFile.
(Rather than type the name, you can right-click on a
file and select “Copy Path(s)” and then paste it into
Thonny.)

10. Finally, using File Manager, go to
/home/pi/Documents/Python Programs,

and locate the motion-….jpg files which the

DetectMotion.py program saves. Open the first one,
and use the arrows to go through the images.
Choose one or two to copy to your in
/home/pi/Videos folder for use in the video

you’re making in Flowblade.

Note: It would have been pretty easy to put a
“timestamp” on the image. The next activity
superimposes a rectangle.

E. Detect Faces

1. If not already open, start Thonny.
2. Open DetectFaces.py. It’s down a level from the other

programs, in /home/pi/Documents/Python
Programs/faceDetection/.

3. Run the program in Thonny. It should display a live video of what the
camera sees, with a blue rectangle around any faces it detects.

4. Get your whole team in the picture, and see if it can also detect a
printed picture of a face. The person organizing this project should
have provided some printed faces to choose from.

5. When you think you have a good demo, press the PrtScn key. It will
capture an image of your entire screen, and put it in /home/pi

with a name such as 2020-03-13-151234_1600x900_scrot.png.
If you like the way it came out, go on to the next step.

6. Close out of Thonny to conserve system resources, since you will do some graphic editing in the next step.

7. From the main “Raspberry” menu, select Graphics > GNU Image Manipulation Program (GIMP).

8. Drag your *_scrot.png file into GIMP, or use File > Open to open it.

9. In GIMP, do the following to crop the image down to just your “video” window:

a. Tools > Selection Tools > Rectangle Select

b. Drag from one corner to the opposite corner to select the “video” window. If you don’t like it, just try again.

c. Do: Image > Crop to Selection.

d. Do: File > Export As… and save it in your Videos folder with a name such as FaceDetection.png. (You can use

all the default Export settings. You have to use Export because Save saves as GIMP’s own special file format.)

That is all for this activity, except for a couple notes:

 GIMP can do a LOT of other image processing besides cropping.
 The openCV package we’re using can not only detect faces; it can recognize faces. That is, it

can be taught to tell one person’s face from another. Think: the CIA spotting a terrorist in an
airport. Yeah, they have to use computers that are more powerful than a Raspberry Pi, but if
you’re not trying to process several hundred faces every second, you can do it with a Pi.

However, we have a few other things to try still if there’s time.

Let’s consider what time we have left for activities before the entire project session ends, and what we might do with it.

We’re hoping to set up one Raspberry Pi in the school concourse which will cycle between detecting faces and displaying
your videos. So it would really be good to get everything you can into your video. Aside from adding what you’ve done
recently, a good plan would be to reserve at least the last half hour of the last day for this.

And there are 3 more activities we’re about to describe, and they don’t need to be done in order. So you may want to do
them in the order that most interests you in case you can’t get to them all.

Here’s what we have:

 Optical character recognition (OCR) – read a sign and convert it to speech (read it out
loud). This is pretty quick.

 Time lapse photography – condense an hour, day, or week of images into a few
minutes of video. Once you test this out with a birthday candle, a good activity would
be to point the camera out the window and record people, cars and buses coming
and going for one whole week. This doesn’t take too long to set up, but obviously you
can’t start that on your last week.

 “Invisibility Cloak” – Instead of doing the “green screen” thing where the background
is removed, we record the background, then step into the picture and hold up a red
cloth. Our program then removes all red from the foreground to give an “invisibility
cloak” illusion.

 Finish up your video record of all you’ve done so it can become famous.

F. Optical Character Recognition (OCR)

1. If not already open, start Thonny.
2. Open ReadText.py, in

/home/pi/Documents/Python Programs.
3. Run the program in Thonny. It should display a live video of

what the camera sees. Carefully aim the camera straight
down so that you can lay down a sheet of paper and see it
with the camera.

4. Put some printed matter so it appears correctly to the
camera, and type Enter as instructed in Thonny’s “Shell”
pane.

5. In the Shell pane, it will say “Processing…” and this will take
several seconds. Then it will print what it thinks the printed
text says, after which it will speak the text with a synthetic
voice.

6. You can try different printed samples to see how well it does
with each one.

Unfortunately, recording audio with a Raspberry Pi requires an additional microphone we don’t have, and recording

both audio and video at the same time involves some special set-up. So we’re not going to have anything from this

activity to add to our video record. But hopefully it was fun!

G. Make a Time-Lapse Movie

1. If not already open, start Thonny.
2. Open TimeLapse.py, in

/home/pi/Documents/Python Programs.
3. Think about what you will be recording for your first short test.

Do you need to change the delay or duration variables?

4. Run the program in Thonny. Again, it should display a live video
of what the camera sees. Make sure you are set up to take your
first test, and press Enter.

5. When it is done recording still images, it will print out the
command you need to run in a Terminal window in order to
combine the images into a video. You can replace “output.mp4”
with something more meaningful, or rename it later.

6. Play the video you made, either with VLC or ffplay.

Notice that the Python program saves images to a subfolder named “CamOut” using filenames that start
with the prefix “img”. You can clear out all the *.jpg files from the CamOut folder (once you’ve made your
.mp4 video from the *.jpg files) or you can edit the Python program to use a different prefix instead of “img”.
Or create another folder at the same level as CamOut, and edit the Python program to use that. The Python
program will silently overwrite any files by the same name, but if you write fewer files than on a previous
run, you’ll have to figure out which ones to keep and which ones to delete before you run ffmpeg to make
your movie, or your movie will, for example, start with a view outside and finish with a burning candle.

7. Figure out what you need to do to set up for a long capture. If it will be several days, what length should the

resulting video be? It will be 24 frames per second (fps) where each still image becomes a frame.

For example, let’s say you want to record for 6 days and condense it down to 1 minute. Given you want the
video to be one minute long, that’s 24 frames/second x 60 seconds = 1440 images to take over 6 days. Since
6 days is 518400 seconds, you’ll want to take an image every 518400/1440 = 360 seconds. You’ll need to edit
your delay and duration variables accordingly.

8. Decide your capture schedule, edit your Python variables, and set up your camera. Then start the process going, and

carefully disconnect the monitor, keyboard, and mouse from the Pi. Good luck!

9. When you return, reconnect monitor, keyboard, and mouse. Run ffmpeg and view your movie.

10. Copy the movie you made to your Videos folder.

H. Invisibility Cloak

1. You will need the “magical” red coat that my auto mechanic gave me because someone left it in an old car. One

could imagine spooky stories about why it is magical. I’ll leave that part to you. Maybe add it to your video you’re

making.

2. Open /home/pi/Documents/Python Programs/InvisibilityCloak.py in Thonny.

3. Run the program. You will be prompted (by robot-voice) to “stay out of sight until the spell is ready.” The program is

taking an image of the background scene.

4. When you are told the “spell” is ready, simply get in front of the camera and hold up the magical red coat.

5. At a point where the effect looks especially good, press the Escape key. It will:

a. Save a capture of the entire screen to cloak.jpg in your Python Programs folder.

b. Stop the program.

6. You can rerun the program if you want to try again. If you don’t remove cloak.jpg first, scrot will make up a new

filename by adding a number after “cloak”.

7. Refer to E. Detect Faces, starting at step 6, to crop cloak.jpg to show only the output window instead of the entire

screen. Finish by exporting it to your video folder.

I. Final Video Editing

1. Start Flowblade again, as described in C Video Editing, b) Combining files using Flowblade.

2. Add all the media files you might use to the top-center Media pane.

3. Stack up your pieces from left to right on the V1 row of the timeline window (bottom pane).

4. You can also add audio tracks. A few are provided in /home/pi/Music/SoundEffects and

/home/pi/Music/SoundTrack.

5. In the timeline image above, two music MP3 files were added to A1, each of them shortened and faded out. Two

sound effect MP3s were added to A2 (the first one not starting until almost 12 seconds in).

6. The Titler was used (see C Video Editing, c) Adding titles in Flowblade) to create the credits at the end of V1.

(Do be professional and give credit to work that is not your own.)

The demo movie shown in the timeline image above is /home/pi/Videos/FlowbladeMovieDemo.mp4.

7. The OCR.jpg image is used twice in a row on the timeline. The 2nd time it is used it is enlarged and offset. You can

do this by right-clicking on an item in the timeline and selecting Add Filter > Transform > Translate.

8. To fade an audio track in or out, right-click on it and select Edit > Volume Keyframes.

9. When you have it all assembled the way you think you want it, you need to “render” it into a single video. From

the main menus, select Render > Render Timeline. This will take about 3 minutes for every minute of video.

Please take a minute to complete the following survey

Please list any errors you found in this document:

Which activity did you find most difficult? Can you say why?

Which one or two activities did you like the most?

Please add any comments you wish to make about the activities:

A. Take a picture

B. Record a Video

C. Video Editing

D. Detect Motion

E. Detect Faces

F. Optical Character Recognition (OCR)

G. Make a Time-Lapse Movie

H. Invisibility Cloak

I. Final Video Editing

